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Abstract Meteorological and oceanographic data from
ships of opportunity are the largest contributor to the
world’s ocean surface database and thus are extensively
used to estimate the change in climatic properties over the
world’s oceans during the previous 150 years. The
importance of these data for climate change studies under-
scores the need to fully understand the error associated with
averages of these data. The sampling error problem is
especially acute for ship data due to the fact that ships are
moving platforms and, thus, report observations from
constantly varying locations with time. This paper develops
a theoretical framework for assessing the averaged sam-
pling error associated with monthly, 1°×1° latitude-longi-
tude box averaged ship data. It should be noted that the
time-space distribution of ships within the averaging domain
strongly affects the sampling error. This is shown in our
derivation. The framework developed here can be used to
improve upon existing methods for estimating the sampling
error associated with three-dimensional box averages of
meteorological and oceanographic data obtained from ship
records. The framework is complimentary to existing
methods of assessing biases and random error due to
instrumentation, recording, etc. It is demonstrated mathe-
matically that the uncertainty due to incomplete sampling is

primarily a trade off between of the number of observations
and their relative locations within the box as well as the
inherent time-space correlation structure of the variable of
interest. This work differs from other studies in that the three-
dimensional interdependence of data is taken into account in
deriving an expression for the sampling error.

1 Introduction

Knowledge of the present and future states of our climate
requires that in-situ observations be taken over large time
and space domains. As the oceans make up about 70% of
the earth’s surface area, they are of particular interest to
climatologists. While satellites provide excellent spatial
coverage of the earth, they have only been operational since
the early 1970s. Therefore, it is essential to collect data
from as far back in history as possible to assess variations
in climate longer than the current satellite record can
discern. In addition, satellites measure meteorological and
oceanographic variables only through indirect conversion
of received irradiance using statistically and physically
based algorithms. Thus, in-situ data are required to check
the validity of satellite estimates.

For these reasons, a cooperative project to collect and
digitize meteorological and oceanographic observations
taken from ships, especially merchant mariners, was begun
during the 1980s (Woodruft et al. 1987). This project,
referred to as the Comprehensive Ocean-Atmosphere Data
Set (COADS, now called International COADS or
ICOADS), is a cooperative international project to collect
global weather and ocean observations primarily from ships
of opportunity from 1854 through present. The year 1854
was significant in that the Brussels Maritime Conference of
1853 concluded that ship weather records should be
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assimilated as much as possible and made available for the
study of weather and climate. This effort has continued to
this day.

The primary variables measured from ships include wind
speed and direction, atmospheric pressure, sea surface
temperature, and present weather. The ICOADS data set
now includes data from other oceanic sources in addition to
ships of opportunity (Woodruff 2001). Data collected from
relatively recently installed oceanic platforms such as
buoys, are currently being included in ICOADS.

While there are many different averaging techniques
available, the simplest by far, and that used by the
developers of the ICOADS project to produce the basic
1°×1° latitude-longitude, monthly box, is a non-weighted,
arithmetic time-space averaging scheme. This scheme is
used for its computational simplicity, as the number of ship
reports contained in the data set is in the millions. The
disadvantage of using this method is that it does not weight
the data according to their relative locations in time and
space and, thus, does not produce a value which minimizes
the inherent sampling error in the average.

While merchant ships travel all of the world’s oceans
and provide important measurements from these regions,
the ships also tend to travel along specific shipping lanes
for speed, safety and economic reasons, rather than to
optimize the sampling of environmental data. Thus, from a
sampling standpoint, data collected from these ships suffer
from extremely irregular time and space sampling. This
calls into question the uncertainty of box averages
constructed from ICOADS data. For example, ships
traveling in convoys would produce a quasi-linear sampling
scheme as observed in a three-dimensional sense. Ships
close to each other in time and space tend to have similar
data values and, thus, would be considered somewhat
statistically dependent. This tends to reduce the degrees of
freedom of data making up the average, thereby increasing
the sampling error. In other words the ‘effective number of
independent number of observations’ is reduced (refer to
Jones et al. 1997).

It is well known that sampling error is only one
contributor to the uncertainty of climate averages con-
structed from ship data. One ship may contribute a
substantial number of reports to a specific monthly box
average as it moves through the box during a month. If this
ship’s data contain a significant amount of systematic error,
the resulting average will also contain a large amount of
systematic error. Systematic and other non-sampling related
random errors can arise from a multitude of sources,
including instrumentation biases, transmission and tran-
scription errors. In addition, the instrumentation itself has
changed throughout the years, creating a degree of
inhomogeneity in the data. It is quite difficult to quantify
these types of errors and much work has been done to do

just that. For example, Kent et al. (1999) focused on the
random errors of individual measurements taken onboard
voluntary observing ships. An extensive list of publications
relevant to ship-measured observation errors, both biased
and random, can found at the James Rennell Division
(JRD) component of Southampton Oceanography Centre in
Southhampton, United Kingdom1. A sampling of studies
relevant to ICOADS instrumentation errors and inhomoge-
neities are given by Jones (1994) and Folland and Parker
(1995).

Others have derived various relationships to ascertain the
sampling error of climate data averaged in time, space and/
or time-space. A sub-set of these studies include Parker
(1984), Wigley et al. (1984), Trenberth (1984a), Trenberth
(1984b), Briffa and Jones (1990), Kagan (1997, reprinted
from earlier Russian manuscript), and Jones et al. (1997).
Trenberth (1984a, b), in a rather complete treatment of this
subject, demonstrated the importance of carefully comput-
ing the uncertainty in climate averages and developed a
method of separating out climate signal from noise in time.
Trenberth’s development termed ‘climatic noise’ as error
which arose from incomplete sampling. He also fully
realized that there are many other contributions to ‘noise’
in climate averages such as instrumentation error, recording
errors, etc.

The most recent method for accessing the sampling error
associated with climatic time-space box averages was first
developed by Briffa and Jones (1990) and later re-derived
and applied to global air temperature data by Jones et al.
(1997). Hereafter, we will simply refer to Jones et al.
(1997), since this is the most often-referenced work in
climate related journals, e.g., refer to Parker and Horton
(2005) Smith and Reynolds (2005) and Brohan et al.
(2006). While most of their constructs are based upon
practical considerations, their derivation was incomplete.
Not incorporated in their method is the contribution to the
sampling error of a three-dimensional time-space average
from incomplete sampling in the temporal dimension. They
assumed, advertently or inadvertently, that measurements
from stations from a fixed location contained zero temporal
sampling error. This can be shown through their use of a
time-averaged ‘spatial’ correlation function in their devel-
opment. The effects on the sampling error from varying
temporal sampling schemes or simple discrete temporal
sampling were not incorporated into their scheme. They
utilized an exponential decay function to represent the
spatial correlation between observations. This function
contained a single parameter representing only the spatial
separation distance between data points within a time-space
box. Since most climate variables (excepting rainfall from

1 http://www.soc.soton.ac.uk/JRD/MET/met_pubs_all.php
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accumulating rain gauges) are measured discretely in time
as well as space, error is introduced into climate box
averages from incomplete sampling in time.

Wolter (1997) notes that “marine air temperature has
been shown to have such high daily persistence (Parker
1984) that effectively only about five independent samples
can be drawn in any given month”. Jones et al. (1997)’s
method would lead to an overestimate of the number of
independent samples taken in time which in turn leads to an
underestimate of the sampling error associated with a
climate box average. Thus, the dependence among data in
the temporal dimension should be included in any tech-
nique for estimating sampling error in climate box
averages. In the method of Jones et al. (1997), the
dependence among daily air temperature data would
seriously reduce the ‘effective number of degrees of
freedom’ which is the central parameter around which their
method is developed (refer to the discussion of this
parameter, Neff, in Jones et al. 1997).

The inclusion of the dependence effects among data
separated in time considerably complicates the develop-
ment of a practical method for the determination of the
sampling error in time-space boxes. The equations derived
in this paper incorporate quite a few parameters which
would in practice be estimated using statistics calculated
from data (i.e., statistical estimates). Since this is a
theoretical development no assumptions need be made at
this stage about the homogeneity or stationarity of the
statistics that would be used to estimate the parameter
values (since no statistical estimates are used in the
construct). An example utilizing ship data is shown only
to illustrate theoretical relationships among parameters and
to clarify the meaning of the resulting sampling error
expression. In this manner, this paper differs from that of
Jones et al. (1997).

Thus, it is not the main purpose of this paper to develop
a practical method which researchers can readily to
ICOADS. Rather, due to the complexity of the issues
involved with three-dimensional sampling, a framework is
constructed whereby the theoretical relationships among
relevant parameters are demonstrated. It is hoped that
researchers will use the resulting equations and theoretical
constructs to develop a practical method for operational use
with three-dimensional averages which now incorporates
the effect of discrete temporal sampling.

Another complication treated in this paper is the fact that
ships are generally traveling and reporting data at specified,
discrete time intervals, usually 6 h apart. Thus, they present
ever changing sampling structure within climate boxes, say
from month to month. In the past, it has been common
practice to estimate the uncertainty of three-dimensional
ship data averages using indirect methods such as Monte
Carlo sub-sampling schemes (Legler 1991, Cayan 1992,

Gulev and Hasse 1998). While relatively easy to apply,
these methods assume that the ship reports are randomly
distributed within the averaging domain, which in most
situations they are not. One can easily imagine a likely
sampling scheme associated with moving ships. Observed
in a three-dimensional sense, such a ‘network’ in a time-
space coordinate system would likely be linear or clustered.
For example, one ship traveling from east to west through
an ICOADS box during a month would produce a linear
network of data reports. A convoy of ships traveling
northwest to southeast through one corner of an ICOADS
box could be likened to a clustered network. Thus, given a
set of fixed parameter values (e.g., the point variance, s2

p),
the different sampling ‘networks’ from one ICOADS box to
another would produce a different value for the sample
error for different boxes simply due to the varying relative
time-space ‘locations’ of the ship reports within each box.

In developing an expression for the uncertainty associ-
ated with three-dimensional ‘networks’, a review of the
theoretical work done with various fixed two-dimensional
structured rain-gauge networks eases the process (e.g.,
Journel and Huijbregts (1989); Rodriguez-Iturbe and Mejia
1974; Morrissey 1991, Morrissey and Greene 1993, 1998,
Krajewski et al. 2000, and Gebremichael et al. 2003). The
developments in these studies allow one to make the rather
large leap from two to three dimensions. These studies have
all utilized random function theory which we will utilize as
well.

One very important, but complex, notion is the definition
of sampling error. We define the sampling error as the
additional variance contributing to the temporal box
variance which is due to incomplete sampling. Ideally,
with ICOADS one would like to determine the sampling
error associated with each value of a set of climatic box
averages. This is impractical since it requires accurate
estimates for the required parameters made from statistics
constructed from very small sample sizes (i.e., the data
within a given ‘box’). Thus, the best that can be done is to
estimate the sampling error associated with ICOADS boxes
having a given sampling structure given specified assump-
tions about the statistics used to estimate the parameter
values. For example, suppose we want to estimate the
sampling error associated with a specific ICOADS box
centered on the equator and the dateline for January 1959.
This box has a given sampling structure in time and space
which most likely differs from most other boxes. There are
not enough data within this single box to accurately
estimate the parameter values that are required in the
computation of the sampling error for this one box. If we
utilized data outside this box in time and/or space to
estimate the required statistics, as did Jones et al. (1997),
then we can determine the sampling error for this ICOADS
box. However, the validity of the assumption that the
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statistics computed from regional or long-term data are
representative of parameter values for that box (e.g., the
true variance of the observations within the box) depends
upon the bounds of the domain where data are gathered to
compute these statistics and the sample size used. There-
fore, the best we can say is that for a given time-space
sampling structure, the computed sampling error is accurate
only as far as the statistics accurately represent the box
parameters. Another way to state this problem is to say that
the estimated sampling error is representative of boxes
having a set time-space sampling structure over the domain
where the statistics are stationary and homogeneous. The
difficulty, of course, is defining this domain.

Perhaps the most important parameter used in our
derivation is the box mean. A box mean estimated using
only the data available from a single box cannot be used
since the difference between the estimated mean (using the
data) and the parameter value representing the mean is due
to the sampling error itself. Thus, we will take the tack of
using the long-term mean for the spatial location of the box
in our development. We do this since the long-term mean
parameter is likely to be accurately estimated from the long-
term data from the box spatial location, assuming the data
has been de-trended. Using the long-term mean parameter
thereby forces us to re-define the sampling error as the
time-averaged sampling error associated with the selected
box’s sampling structure.

2 Application of random function theory to geophysical
data

Perhaps the best way to understand the theoretical approach
taken in this paper is to take an analogy from geostatistics
(Journel and Huijbregts 1989) applied to geology and
mining. In these fields, it is common to work with three-
dimensional spatial volumes to assess the amount of ore or
mineral content within each spatial volume. In the case
presented in this work, the ‘time’ dimension is analogous to
the ‘vertical’ spatial dimension. To obtain a basic under-
standing of random function theory one assumes that z(x)
represents a random variable at a point, x, in three-
dimensional space. It is assumed that z(x) has a probability
distribution function or more properly a probability density
function (PDF). Quoting Journel and Huijbregts (1989),
“The problem is to represent the variability of the function z
(x) in space” (or space-time in the case of the deviations
presented in this paper). There may or may not be
observations of z(x0) at location x0. However, there usually
are observations at nearby locations z xiÞ; i 6¼ 0ð Þð all of
which are assumed to have the same PDF. If nearby
locations having observations are correlated with each
other, the problem then becomes the determination of the

function Z(x) where position vector x varies throughout the
three-dimensional domain, i.e., D3. The set of auto-
correlated random variables is the random function
Z xð Þ i:e: z x0ð Þ;z x1ð Þ; . . . 2 Z xð Þð Þ. The problem then
reduces to one of determining the correlation function
between the different random variables in Z xð Þ 8 x 2 D3.

It should be noted that an observation is considered as
one realization of the random variable z(x), the set of which
constitutes the random function Z(x). Given that the
random variable z(x) has a certain PDF the question
becomes, how to estimate this PDF? Obviously, the PDF
cannot be determined from one observation. However,
given a certain domain, it is often appropriate to assume
that the probability density of z(x) is the same throughout
the domain (i.e., homogeneous and stationary in D3) at least
up to the second order. Thus, within this domain, all the
available observations can be considered realizations from
the same probability distribution which then can be used to
estimate the PDF. The question then becomes whether or
not the assumption of homogeneity/stationarity is appropri-
ate for a given domain under study.

The meaning of ‘second order’ is that the mathematical
expectation of the second central moment of the random
variable z(x) is independent of location in the averaging
domain and that the covariance between any two random
variables is a function of distance only. Statistics computed
from the data are used to estimate the value of certain
‘parameters’ (e.g., s2 is used to estimate σ2). In reality,
physical processes vary over time and space. Thus, the
parameters are only homogeneous/stationary within certain
dimensional boundaries and then only approximately. In
any use of the expression developed here, it must assume
that the expectation of the different moments of the random
variables (i.e., the parameters) are at least quasi-homoge-
neous/stationary within the domain of interest only and that
errors resulting from this assumption will be small enough
for our results to be useful.

3 Domain descriptions

While the technique described in this paper can be applied
to any space-time averaging domain, it simplifies matters to
select a specified domain within which we define a linear,
three-dimensional coordinate system. For clarity, the deri-
vations in this paper will utilize two distinct domains over
which the expectation of the required moments of different
random variables will be taken. The first domain is a cubic
domain D3

1 bounded in time and space representing month,
M. This domain represents a single ICOADS 1°×1°,
monthly box. A cubic space-time coordinate system (x, y,
t) is defined within this domain. A visual representation of
this domain is shown in Fig. 1. The variables X, Y are
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longitude and latitude, respectively, of the centroid of the
ICOADS box and M is time or ‘month’ the box represents.
The highest reporting resolution in ICOADS for individual
ships is to the nearest 0.1°×0.1° latitude, longitude with
each ship reporting approximately at a 6-h time interval.
Thus, the box domain can be divided into 10×10×120 (i.e.,
12,000) sub-boxes with each sub-box representing a 0.1°
latitude, longitude, 6-h cube (assuming a 30-day month).
The vector p(i) is a location vector from the domain origin
(e.g., the southwest corner at the beginning of the month) to
the centroid of a given sub-box ‘i’ within the box domain
p ið Þ 2 D3

1

� �
. Thus, p(i) is pointing to the sub-box centered

at longitude xi, latitude yi, and the 6-h period, ti (i=1 to m,
where m is the total number of sub-boxes within D3

1 with
m=12,000). The random variable R(p(i), M) represents any
ship-measured variable such as air temperature, sea surface
temperature, wind speed, etc. within the sub-box located at
vector p(i). The ‘length’ of p(i) with respect to the origin is

p ið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ y2i þ t2i

q
ð1Þ

We have little choice but to assume that a single ship
observation within a sub-box adequately represents the sub-
box’s true volume average and that the average of more
than one ship value in a sub-box represents the value of that
sub-box. A second domain is now defined as that bounded
in space but unbounded in time. This domain, which we

refer to as D3
2 is defined so that it would be clear to the

reader over which domain the statistical expectation
operator is taken. A visual representation of this domain is
shown in Fig. 2. Note that domain D3

2 encompasses domain
D3

1, i.e., D3
1 2 D3

2. We will also use two different
expectation operators, one for the expectation over D3

1

(i.e., E1) and one for that taken over D3
2 (i.e., E2).

4 Error variance due to incomplete sampling in time
and space

Given a fixed time-space distribution of ship reports within
domain D3

1, it is of interest to determine the time-averaged
sampling error variance within an ICOADS box. For
example, a user may want to know what the time-averaged
sampling error variance is for an ICOADS box with the
distribution of ship reports like that shown in Fig. 1. In the
derivation presented in this paper, the delta symbol (e.g.,
Parker 1984; Morrissey et al. 1995) is used as a binary
variable indicating whether a given sub-box contains one or
more observations. If more than one ship report is in the
same sub-box, then the observations in that sub-box are
averaged to produce a single value for that sub-box. Thus,
the delta symbol d p ið Þ;Mð Þ refers to the presence (i.e.,

Fig. 1 The ICOADS 1°×1°×1 month box domain, . Hypothetical ship
observations in time and space are shown by the dots. Examples of
two ‘sub-boxes’ are shown by the two cubes within the ICOADS box

Fig. 2 A visual representation of domain D3
2. With M ¼ �1 to þ1

representing different months. This domain can be visualized as one
ICOADS box fixed in space but for different months
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δ p ið Þ;Mð Þ ¼ 1) or absence (i.e., δ p ið Þ;Mð Þ ¼ 0) of an
observation within a sub-box defined by a vector, p(i)., i.e.,

– δ p ið Þ;Mð Þ ¼ 0→No ship observation in a sub-box
located at vector position p(i) and month M within D3

1

and
– δ p ið Þ;Mð Þ ¼ 1→At least one ship observation in sub-

box located at vector position p(i) and month M within
D3

1.

Within domain D3
1 there are ‘n’ n 2 0; 1; 2; . . . mf gð Þ

number of sub-boxes containing at least one ship observa-
tion and m total sub-boxes i ¼ 1; 2; . . . mð Þ. The total
number of sub-boxes must be greater than or equal to the
number of occupied sub-boxes, n,

n Mð Þ ¼
Xm
i¼1

δ p ið Þ;Mð Þ 8 n � m ð2Þ

For the following derivations we will utilize the long-term
box mean parameter defined as the expectation of
R p ið Þ;Mð Þ over D3

2. In other words, the long-term mean is
defined as the expectation of the variable of interest, R,
within the domain shown in Fig. 2, i.e., over all M,

μ ¼ E2 R pðiÞ;Mð Þ½ �; p ið Þ 2 D3
1; M 2 D3

2 ð3Þ

An estimate of the long-term mean parameter can be easily
computed from the available data using

2 � R ¼
XMmax

M¼1

Xn Mð Þ

i¼1

R p ið Þ;Mð Þδ pðiÞ;Mð Þ
n Mð Þ ;

p ið Þ 2 D3
1; M 2 D3

2

ð4Þ

where M=1 and Mmax redefine as the first and last months
in the record, respectively. The total number of available
observations within that ICOADS box for month M is
defined as n. Generally, a very large sample size is available
to estimate this value which gives the estimate of μ (i.e.R) a
relatively small error variance.

The estimated mean value of a random variable for a
specific ICOADS ship box (i.e., D3

1), is defined using

RðMÞ ¼
Xm
i¼1

RðpðiÞ;MÞ δðpðiÞ;MÞ
nðMÞ ð5Þ

The mean parameter value for the same random variable
is defined as the expectation over the domain shown in
Fig. 1, i.e.;

μðMÞ ¼ E1½RðpðiÞ;MÞ�; pðiÞ 2 D3
1 ð6Þ

Note that R Mð Þ is a statistic and μ(M) is a parameter. Also
note that while μ(M) is a constant for domain D3

1 (i.e., the

month M is fixed), it is a random variable within domain D3
2

since within this domain the month varies (i.e., M=1, 2, 3
….). Note that the difference between R Mð Þ and μ(M) is
due to sampling error only.

We now will develop an expression for the sampling
error variance, given a fixed sampling distribution within
D2

3. We will begin by finding the total variance (i.e.,
variance in time) of R Mð Þ about the long-term mean
parameter, μ. This is done by taking the expectation of
the square of the box mean estimate about the long-term
mean parameter, i.e.;

s2
T ¼ E2 R Mð Þ � m

� �2h i
ð7Þ

By taking the expectation over D3
2 (using E2) we are

including all possible realizations of R Mð Þ within D3
2. The

total variance, s2
T , includes variance contributed by the

sampling error (i.e., s2
e ; n < m ) and the box to box

temporal signal variance (i.e., s2
S ). The signal variance is

mathematically expressed as,

s2
S ¼ E2 ðmðMÞ � mÞ2

h i
ð8Þ

From the analysis of variance relationship the variances can
be partitioned into

s2
T ¼ s2

e þ s2
S ; n Mð Þ � m; s2

e ; s
2
s � 0 ð9Þ

The sampling error variance can now be found by
rearranging the above equation, i.e.,

s2
e ¼ s2

T � s2
S ð10Þ

In the case of a completely sampled box (i.e., n=m with
δ p ið Þ; Mð Þ ¼ 1 8 i ) the sampling error variance, s2

e ,
becomes zero and, thus, the expression in Eq. (10) becomes

s2
T ¼ s2

S; ðnðMÞ ¼ mÞ 8 M ð11Þ

since the difference between the total variance and the
signal variance is the sampling error variance (this was also
demonstrated by Jones et al. (1997, e.g., 2) in a slightly
different manner). Below we will develop an expression for
the difference between s2

S and s2
T , which is, of course, the

sampling error variance, s2
e .

Before developing this expression two additional expres-
sions need to be defined. The point variance parameter is
defined as the expectation of the squared deviation of the
values in all sub-boxes within D3

2 about the long-term
mean,

σ2
p ¼ E2½ðRðpðiÞ;MÞ � μÞ2� ð12Þ
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Likewise the covariance is also defined using the long-term
mean and is equal to

Cov R p ið Þ;Mð Þ;R p kð Þ;Mð Þ½ � ¼ E2 R p ið Þ;Mð Þ � μð Þ R p kð Þ;Mð Þ � μð Þ½ � ¼

E2 R p ið Þ;Mð ÞR p kð Þ;Mð Þ½ � � μE2 R p ið Þ;Mð Þ½ � � μE2 R p kð Þ;Mð Þ½ � þ μ2

¼ E2 R p ið Þ;Mð ÞR p kð Þ;Mð Þ½ � � μ2

0 E2 R p ið Þ;Mð Þ½ � ¼ E2 R p kð Þ;Mð Þ½ � ¼ E2 μ½ � ¼ μ

ð13Þ

5 Use of the anomaly in determining the standard error

To simplify our expressions we will use the anomaly
defined as

rðpðiÞ;MÞ ¼ RðpðiÞ;MÞ � m ð14Þ
where its expectation over D3

2 is zero (r Mð Þ ¼ E1 r p ið Þ;ð½
MÞ�). Substituting Eq. (14) into Eq. (7), the total variance
parameter using the anomaly now becomes

σ2
T ¼ E2½rðMÞ2� ð15Þ
The anomalous box parameter mean can be defined as
mr Mð Þ ¼ E1 r p ið Þ;Mð Þ½ � and is estimated from

rðMÞ ¼
Xm
i¼1

rðpðiÞ;MÞ dðpðiÞ;MÞ
nðMÞ ð16Þ

If we substitute Eq. (16) into Eq. (15) and expand we get

σ2
T ¼ E2

1

n Mð Þ2
Xm
i¼1

r p ið Þ;Mð Þ2δ p ið Þ;Mð Þ2 þ

2

n Mð Þ2
Xm�1

i¼1

Xm
k¼iþ1

r p ið Þ;Mð Þr p kð Þ;Mð Þ

δ p ið Þ;Mð Þδ p kð Þ;Mð Þ

266666664

377777775
ð17Þ

The point variance parameter using the anomaly is now,

σ2
p ¼ E2½ðRðpðiÞ;MÞ � μÞ2� ¼ E2½ðrðpðiÞ;MÞ þ μ� μÞ2�

¼ E2½rðpðiÞ;MÞ2�
ð18Þ

In a similar manner, the anomaly can be used to simplify
the covariance expression2,

Cov½RðpðiÞ;MÞ � RðpðkÞ;MÞ� ¼ E2½ðRðpðiÞ;MÞ � μÞðRðpðkÞ;MÞ � μÞ�
¼ E2½rðpðiÞ;MÞ rðpðkÞ;MÞ�

ð19Þ
An important note is needed here. Although we are

taking the expectation of the covariance over domain D3
2 we

only use the covariance at lags within the confines of D3
1 as

shown by the limit, m, in Eq. (17). This means that the
largest lag is the largest diagonal distance within D3

1. For an
ICOADS box near the equator this is roughly 157 km–120
6-h periods. Estimates of the covariance can be made using
regional and/or long-term data as long as the homogeneity/
stationarity assumption is met. The correlation is defined as

ρ½pðiÞ � pðkÞ� ¼ Cov½pðiÞ � pðkÞ�
σ2
p

ð20Þ

Taking the expectation of the two terms in Eq. (17) and
substituting the expressions for the variance and correlation
we arrive at

σ2T ¼ σ2p

n Mð Þ2
Xm
i¼1

δ p ið Þ;Mð Þ2þ2
Xm�1

i¼1

Xm
k¼iþ1

ρ p ið Þ � p kð Þ½ � δ p ið Þ;Mð Þδ p kð Þ;Mð Þ
" #

ð21Þ
This expression is similar to that found for a two-

dimensional rain-gauge network by Rodriguez-Iturbe and
Mejia (1974).

Now that we have an expression for s2
T we need one for

the signal variance s2
S to finally arrive at an expression for

the sampling error variance, s2
e . One way to find s2

S is to
use the total variance expression Eq. (21) and assume that
we have complete sampling by allowing the sample size, n
to equal m and, by consequence, letting δ i;Mð Þ ¼
1 8 i 2 D3

1. This reduces the total variance Eq. (21) to
an expression for the signal variance, s2

S ,

s2
S ¼ s2

p

m
ð1þ ðm� 1ÞrÞ ð22Þ

where r results from taking the average of r p ið Þ � p kð Þj j½ �
over all locations, p ið Þ; p kð Þ within D3

1. Note that with m
sufficiently large, Eq. (22) reduces to

s2
S ¼ s2

pr ð23Þ
Using the same principles, Jones et al. (1997) found the

same expression (Eq. 2 in Jones et al. 1997). Thus the
signal of box averages with complete sampling (and no
systematic error) is completely determined by the time-
space averaged covariance only since s2

pr ¼ Cov.
By substituting Eqs. (21) and (23) into Eq. (10), we

arrive at an expression for the sampling error variance,

σ2
e ¼

σ2p
nðMÞ2 �Pm

i¼1
δðpðiÞ;MÞ þ 2

Pm�1

i¼1

Pm
k¼iþ1

ρ½pðiÞ � pðkÞ� δðpðiÞ;MÞδðpðkÞ;MÞ
" #

� σ2pρ

ð24Þ
or

σ2e ¼ σ2p
1

nðMÞ þ
2

nðMÞ2
Xm�1

i¼1

Xm
k¼iþ1

ρ½pðiÞ � pðkÞ� δðpðiÞ;MÞδðpðkÞ;MÞ½ � � ρ

" #
ð25Þ

2 For simplicity we will hereafter allow Cov R p ið Þ;Mð Þ;R p kð Þ; Mð Þ½ �
to equal Cov p ið Þ � p kð Þj j½ �
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Note that d p ið Þ; Mð Þ2 is equivalent to d p ið Þ; Mð Þ. We
now have an expression for the error variance as a function
of sample size, n(M), the point variance, s2

p, the time-space
correlation, r p ið Þ � p kð Þj j½ �weighted by the relative distri-
bution in time and space of ship reports within D3

1 and true
average correlation, r within D3

1. The square root of
Eq. (25) is the commonly known as the standard error
equation. For a given ICOADS box the values for n(M), m
and d p ið Þ;Mð Þ 8 i 2 D3

1 are constants. Values for the
parameters, s2

p; r p ið Þ � p kð Þ½ � and r must be estimated
from data.

Note that with uncorrelated data expression Eq. (25)
reduces to the common expression for the error variance
associated with averages of independent data,

s2
p

nðMÞ. Also
note that the last term in the expression is constant for a
given three-dimensional physical correlation structure and
is not affected by the time-space location of ship reports.
Thus, it is the second term which determines the effect of
different sampling structures on the sampling error.

6 Examination of the standard error equation

6.1 The point variance

An estimate of the point variance, s2
p can be easily

computed using data within the averaging domain from
the following equation,

σ2
p � s2p ¼ 1

T

XT
M¼1

Xm
i¼1

r2ðpðiÞ;MÞδðpðiÞ;MÞ
nðMÞ ð26Þ

where T is the total number of months available in the data
record (i.e., j=1, 2, 3, …T). However, the questions arises,
how closely does the statistic, s2p, approximate the param-
eter s2

p? Since s2
p is defined about the long-term mean in

our derivation (refer to Eq. 12), the answer will depends
solely upon the sample size,

PT
M¼1 n Mð Þ . If the sample

size is relatively small refer to Jones et al. (1997) for
several other ways to estimate s2

p.

6.2 Issues concerning the space-time covariance
and correlation function

Most of the information in Eq. (25) lies in the correlation
function representing the domain, D3

2. Computing a
representative time-space correlation function is difficult
at best. Meteorologists and hydrologists have traditionally
assumed that time-space estimates of environmental quan-
tities have ‘separable’ covariance functions (Rodriguez-
Iturbe and Mejia 1974). In other words, it was assumed that
the correlation function could be constructed from purely

independent spatial and temporal covariance functions,
such that

Covðd; tÞ ¼ CovðdÞCovðtÞ ð27Þ

where d is the spatial component of the vector distance
between two points, and t is the time component between
those two points. While the computation of this function
was relatively simple, its practical use implies several
unrealistic assumptions (Kyriakidis and Journel 1999). For
one, the product of two independent covariance functions
adequately representing the time-space covariance is usual-
ly hard to justify physically. Also, functions of this type do
not allow for time-space interactions (i.e., the time and
space covariance are simply inversely proportional to each
other). It has also been noted by Gneiting et al. (2007) that
a space-time covariance process may not be ‘fully sym-
metric’, that is

Cov½Rðs1; t1ÞRðs2; t2Þ� ¼ Cov½Rðs1; t2ÞRðs1; t1Þ� ð28Þ

where s1,t1 and s2,t2 are two different spatial and temporal
coordinates, respectively. With atmospheric and oceanic
properties, it is noted that the fields are generally not fully
symmetric due to transport effects by winds or ocean
currents. Thus, the concept of symmetry of the covariance
function may be more appropriately applied using a
Lagrangian reference frame. (May and Julian 1998).
Gneiting et al. (2007) pointed out that others (Gneiting
2002 Stien 2005; de Luna and Genton 2005) have shown
the effects of the transport of environmental properties on
the symmetry. Tests for non-separability have been devel-
oped (Scaccia and Martin 2005), Lu and Zimmerman
2005). For a complete description of these issues regarding
the time-space covariance function refer to Gneiting et al.
(2007).

Gneiting et al. (2007) notes that while these issues
concerning the covariance function require further research,
they do not rule out the use of a covariance function as a
tool for describing the statistical characteristics of three-
dimensional physical data. They go on to mention that “one
needs to be cognizant of the effects that violations of certain
assumptions may cause on the resulting statistics”. Gneiting
et al. (2007) also demonstrate that these assumptions are
not always invalid and suggest that “the relevancy of a
given covariance function to a given study will vary on a
case by case basis”.

6.3 A practical set of parametric functions
for a non-separable time-space covariance

Given the reservations of assuming a separable time-space
covariance relationship, Cressie and Huang (1999) and
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Gneiting (2002) formulated a general set of parametric
functions for non-separable time-space covariance that may
be applicable to ICOADS data. We will summarize their
formulation below.

Gneiting (2002 refer to Eq. 14) provides a family of
potential covariance functions where one relevant example
is

Cov d; tð Þ ¼ σ2
p

at2α þ 1ð ÞC exp � c dj j2γ

a tj j2αþ1
� �βγ

0B@
1CA;

ðd; tÞ 2 D3
1

ð29Þ

where symbols a and c are scaling parameters for time and
space, respectively. The smoothness and shape of this class
of functions are controlled by the parameters, a; g 2 ð0; 1�
. The symbol τ≥1 is another parameter which can be
adjusted to improve the fit of the data. The corresponding
correlation function is simply

ρ d; tð Þ ¼ 1

at2α þ 1ð ÞC exp � c dj j2γ

a tj j2αþ1
� �βγ

0B@
1CA;

d; tð Þ 2 D3
1

ð30Þ

The interesting, but not surprising, aspect of this class of
functions is that they were constructed from familiar
correlation functions for environmental time and space
processes (i.e., the exponential and power law functions;
refer to Gneiting 2002). The parameter b 2 0; 1½ � controls
the interaction of the covariance between time and space.
For example, with β=0, we have a separable model where
time and space covariance is proportional to each other. As
β→1 the strength of the interaction between time and space
covariance increases. Also, as β→1 the correlation values
at non-zero lags fall off less and less, as compared with a
separable model (Gneiting 2002).

If Eq. (30) is to be used to represent the time-space
correlation structure of a variable, an appropriate set of
parameters must be found which provide an adequate fit to
the data. To fit this three-dimensional function to data we
must first find the function parameters associated with
time—(i.e., Cov(0,t))—and then do the same with space
(i.e., Cov(d,0)). In the case with Eq. (30) with d=0 the
temporal correlation function would be

r 0; tð Þ ¼ 1

at2a þ 1ð Þt ð31Þ

With t=0 the spatial correlation function becomes

ρ d; 0ð Þ ¼ exp �cd21
� �

ð32Þ

If parameters can be adequately estimated which allow
each function to fit the data separately in time and then
space then, after Cressie and Huang (1999) and Gneiting
(2002), the following function can be minimized to obtain a
value for the time-space interaction parameter, β, over
b 2 0; 1½ �

W ðbÞ ¼
X
i;j

X
t

brðdi;j; tÞ � rðdi;j; tjbÞ
1� rðdi;j; tjbÞ

� �2

ð33Þ

where di,j is the spatial lag between stations i and j. Note
that br is the estimated correlation value found from the data
and ρ is the functional value at the corresponding lag
values.

The steps in fitting such a model to data involve first
assuming that β=0 (i.e., a separable model) and fitting the
spatial (with t=0) and temporal (with di,j=0∀i,j) correlation
functions separately to the data. Once the various param-
eters are found which provide adequate time and space fits,
they can be substituted into Eq. (30) with β=0 and Eq. (30)
can be used in Eq. (33) to find a value for β which
minimizes equation W(β) using numerical methods. Finally,
the resulting β value is used to reconstruct Eq. (30) with
parameter values which produce a three-dimensional
correlation function with a reasonable fit to the data.

6.4 Testing the fit of the correlation function

To find a set of parameters for Eq. (30) which may be
appropriate for use in examining our values using the
standard error equation, we experimented with a sample of
ship air-temperature data taken from a subset of ICOADS
data. The data were taken from the region bounded by
latitude 0 to 10°N and longitude 140–150°E from 1961 to
2004. We further define a smaller ICOADS box-sized
domain D3

1, which is bounded by 0°×1°N and 145°×146°E
and 120 consecutive 6-h periods (i.e., the size of a standard
ICOADS 1°×1° , monthly box). The estimated correlation
values at different space-time distances within D3

1 were
computed using data over the length of the record. Only
lags out to approximately 157 km-120 6-h periods (the
diagonal distance in a monthly, 1°×1° box) were required in
the computation. However, extending the lags somewhat
further out allowed a more precise inspection of the
goodness of fit. Using a least-squares approach, both Eqs.
(31) and (32) were fit to the resulting correlation estimates
and best-fit parameter values were found for each equation.
The results are shown graphically in Figs. 3 and 4 for space
and time, respectively. The best-fit estimates for the
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parameters for each equation are shown in Table 1. From
the figures, it can be observed that both the spatial and
temporal functions to fit the data reasonably well (at least
for illustrative purposes). Note that the correlation values
fall off quite rapidly with time lag with an approximately e-
folding time separation of 2.5 days. However, after this, the
correlation levels off at approximately 0.1 throughout the
month. This is not inconsistent with the results found by
Wolter (1997) mentioned earlier.

To demonstrate the procedure of determining the magni-
tude of separability, a value for the interaction parameter, β
in Eq. (33) was found which minimized W(β) between
0≤β≤1. By using a least-squares method a value of β equal
to 0.1 was found to minimize W(β). This indicates that
degree of separability in our example is quite high, but not
zero. Thus, assuming β=0.1, the resulting time-space
correlation function representing our selected region is

ρ d; tð Þ ¼ 1
1þ27:5t0:999ð Þ0:184 e

�0:153d0:282

t1:998þ1ð Þ:014

8 t > 0; t 2 0; 120; six hour periodsf g; d 2 0; 157kmf g
ð34Þ

To incorporate this correlation function into Eq. (25)
note that d and t are simply the spatial and temporal
components of the separation vector, p ið Þ � p kð Þj j. It
should be stressed that this is an isotropic correlation
structure in space and in reality a more complicated
expression taking into account anisotropy may be war-
ranted. However, for simplicity in illustrating the use of the
sampling error expression, we will assume an isotropic
spatial correlation structure. The resulting three-dimension-
al correlation function is shown in Fig. 5

7 Finding a value for ρ

The last term in Eq. (25) involves the estimation of the
averaged correlation within the averaging domain D3

1, i.e. r.
Now that a representative correlation function has been
found for the domain, the correlation averaged among all
pair of points within the domain D3

1 can be computed.
For ICOADS data and the coordinate system define in

this paper, it is relatively simple to compute r for ICOADS
boxes directly. One can use the determined correlation
function and numerically compute r by averaging the
correlation over all pairs of sub-boxes within D3

1.

Fig. 3 The least-squares fitted
spatial correlation function

Fig. 4 The least-squares fitted
temporal correlation function
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However, given the large number of sub-boxes (i.e.,
10×10×120=12,000) it becomes computationally intensive
when considering the number of pairs of sub-boxes (i.e.,
71,989,050 pairs). A much more efficient way to estimate r
is to reduce the dimensions of the ICOADS box somewhat.
For ICOADS boxes a logical transformation would be to
convert the 10×10×120 system to a 10×10×10 system. This
can be done by defining a new ‘spatial’ variable as

d0 sub� boxes ¼ d

11:1

sub� boxes

km

since each side of a sub-box represents approximately 11.1 km
(near the equator). Also, since there are 120 6-h periods per
month this means that there are 12 6 hour periods

sub�box . To transform
the temporal dimension from 1–120 sub-boxes to 1–10
sub-boxes, a new temporal coordinate system is defined as

t0 sub� boxes ¼ t

12

sub� box

6 hour period

Thus, using these new coordinates we now have a
10×10×10 domain which gives only 494,550 pairs of sub-
boxes. The correlation function in the new coordinate
system is now

ρðd'; t'Þ ¼ 1
ð1þ27:5ð12t'Þ0:999Þ0:184 e

�0:153ð11d'Þ0:282

ðð12t' Þ1:998þ1Þ:014

8 ft'; d'g > 0; t' 2 f1; 10; sub� boxesg; d' 2 f1; 10; sub� boxesg
ð35Þ

Using the estimated parameters values shown in
Table 1 with β=0.1 and Eq. (35), simple averaging was
used to find the average correlation r within an ICOADS
box. This value turned out to be r ¼ 0:102. This
relatively small value is reasonable when one considers
the very small correlation values with lag in the temporal
dimension.

8 An examination of the variance reduction factor, VF

Different forms of the expression within the large brackets
in Eq. (25) have found by many authors for two dimen-
sions (e.g., Rodriguez-Iturbe and Mejia 1974, Morrissey
et al. 1995, Jones et al. 1997, Kagan 1997). This expression

in its various forms has been referred to as the ‘variance
reduction factor’ or VF by Rodriguez-Iturbe and Mejia
(1974). The primary effect of this factor is to account for
the effect of sample size, the correlation structure and the
relative spacing of reports in D3

1 on the sampling error
variance. Higher values of VF correspond to larger the
sampling error values. The VF is equivalent to the
reciprocal of the effective number of degrees of freedom
described by Jones et al. (1997; i.e. 1

Neff
). An examination of

Eq. (25) shows that it consists of three terms. The first term,
which is the reciprocal of the number of reports in an
ICOADS box, acts to reduce the error variance with
increasing sample size. The second term acts to increase
the error variance from correlation or ‘dependence’ among
the data points. This is due to a reduction in the degrees of
freedom from ships that are close to each other in either
time and/or space. Note that the magnitude of this term is
weighted by the points’ location relative to each other
within D3

1 only. In essence, this term represents the
averaged time-space correlation within D3

1 as estimated by
the existing data. The third term, which is not a function of
a particular boxes sampling structure, is the true correlation
averaged within D3

1. Note that this is simply a statistical
expression of the signal variance (when multiplied by the
point variance). This can be observed through a comparison
with Eq. (23). This term is a constant for a given correlation
structure and is independent of sampling structure or
sample size.

For our experiment, it is of interest to examine VF
by varying the sample size n to its extremes. If, for
example, n equalled the total number of sub-boxes, m, and
we assume m to be very large, then the VF reduces to
s2
pr� s2

pr ¼ 0. This can be seen in Eq. (25) by noting
that as n ! m ! 1 the first term becomes zero and the
second term becomes r. Thus, the sampling error variance
equals zero as it should with complete sampling. If n
equals one, VF would reduces to 1�r. In this case the total

Fig. 5 The least-squares fitted time-space correlation function

Table 1 Estimated values of the parameters found for the fitted
space–time correlation function

Spatial Temporal

A NA 27.5
α NA 0.999
τ NA 0.184
C 0.153 NA
γ 0.141 NA
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variance (Eq. 21) of the boxes is entirely a function of the
point variance, i.e.,

s2
T ¼ s2

e þ s2
s ¼ s2

pð1� rÞ þ s2
pr ¼ s2

p ð36Þ
This should be obvious since the box averages are now

simply constructed from a single point and the total
variance of the boxes is the same as the variance of the
individual points.

If the correlation was zero everywhere in D3
1 the error

variance will reduce to the standard expression for
independent data, i.e.

s2
p

n , since term 2 and term 3 in
Eq. (25) would reduce to zero leaving term 1.

9 An illustrative application of the sampling error
variance, s2

e

To observe how the standard error derivation above may be
utilized in a practical sense, ship air-temperature data within
a 1°×1° location was selected within a time-space domain
bounded by 7°N, 84°N and 146–147°E and from 1961
through 2004. These data were used to estimate the
parameters in Eq. (25). The variance reduction factor, VF,
was then computed for each month. Note that, given a fixed
set of parameters, only the sample size and the relative ship
report locations varied from month to month. Equation (35)
was used for the representative space-time correlation
function.

The results of this experiment are shown in the top plot
of Fig. 6. The VF values are relatively high and erratic
during the beginning and end of the period. During the
middle of the period the VF values slowly decrease, reach a
minimum near the 250 to 200th month of the period and
then start to increase again. This indicates that the sampling
error is quite high during the beginning and end of the
period relative to the middle portion. To see what may have
contributed to the variation in VF, we also plotted the
number of observations per month throughout the period
(bottom Fig. 6). While the number of observations per
month is relatively low at the beginning and the end of the
period, they cannot completely explain the lack of variation
in VF during the middle of the period. The number of
observations reaches a maximum near the 300th month but
fluctuate considerably from month to month, while VF is
relatively constant. One might expect the large monthly
fluctuations in the number of observation to produce similar
fluctuations in VF, but this is not seen. The most likely
explanation for this is that, given less than approximately
ten observations per month, the sample size is the
controlling factor in VF (i.e., term 1). With greater than
ten observations per month, the relative time-space posi-
tions of the observations (i.e., term 2) control the magnitude
of VF. Thus, given the estimated time-space correlation
structure and months having more than ten observations,
the individual observations become somewhat redundant
due to the higher correlation values resulting from ship

Fig. 6 The variance reduction
factor, VF, for ICOADS month-
ly, 1 degree boxes bounded by
7°N, 8°N and 146–147°E from
the months spanning January
1961 through December 2004
(top). The number of observa-
tions per box for that location
from the same period. Note that
VF values representing months
when there were zero observa-
tions are not plotted (bottom)
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reports located (in time and space) close together (i.e., Neff

becomes constant). Possible reasons for the variations in
number of observations for this particular location through-
out the record may be the altering ship travel lanes, data not
updated near the end of the period and a fall off of
observations near the beginning of the period, etc.

Nevertheless, what is clear from this experiment is that
the uncertainly of the estimated box averages is consider-
ably less near the beginning and end of the period. Note
that the sampling error throughout the middle portion of the
period for this location is approximately constant at 15% of
the point variance compared to about 50% for beginning
and end of the period. The results also indicate that a
hypothetical addition of more ship reports during the
middle portion of the period would not substantially alter
the magnitude of the sampling error since the data are
already quite statistically interdependent.

10 Conclusions

A mathematical expression for the sampling error variance
of standard ICOADS 1.0°×1.0° latitude/longitude monthly
boxes has been derived. This study differs from similar past
studies in that the resulting expression incorporates the
effects of incomplete sampling in both time and space on
the sampling error.

This study is unique in climate research in that it was
realized that the correlation function used in the computation
of the sampling error must represent the interdependence
among observations in not only space, but time as well, if
observations are taken discretely in all three dimensions.
Using ship data from the equatorial western Pacific, the
resulting time-space correlation function was found to have a
relatively large amount of time-space separability as indicat-
ed by the estimated value of β which was 0.1 which ranges
from zero to one. It would be interesting to determine if this
is true for mid-latitude regions as well.

The illustrative example using data from the 1.0°×1.0°
latitude/longitude location, indicated that, for that particular
area, the sampling error was quite high during the
beginning and end of the record compared with the middle
of the period (approximately 50% compared to 15%). The
effect of ship-report locations on the sampling error
variance within a standard ICOADS box was shown to be
a strong function of the time-space correlation structure and
the sample size itself. In the particular case of ship-recorded
air temperature from the ICOADS box in the western
equatorial Pacific, it was shown that 1/VF, or the effective
degrees of freedom, is strongly affected only when ship
reports are less than approximately ten observations per
month. Several reasons for this were hypothesized. How-
ever, the point of this exercise was to demonstrate the

potential usefulness of the derived sampling error expres-
sion and questions into why the results of the expression
behaved the way they did requires further research.
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